Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Med Chem ; 67(5): 4063-4082, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482827

RESUMO

Dengue is a global public health threat, with about half of the world's population at risk of contracting this mosquito-borne viral disease. Climate change, urbanization, and global travel accelerate the spread of dengue virus (DENV) to new areas, including southern parts of Europe and the US. Currently, no dengue-specific small-molecule antiviral for prophylaxis or treatment is available. Here, we report the discovery of JNJ-1802 as a potent, pan-serotype DENV inhibitor (EC50's ranging from 0.057 to 11 nM against the four DENV serotypes). The observed oral bioavailability of JNJ-1802 across preclinical species, its low clearance in human hepatocytes, the absence of major in vitro pharmacology safety alerts, and a dose-proportional increase in efficacy against DENV-2 infection in mice were all supportive of its selection as a development candidate against dengue. JNJ-1802 is being progressed in clinical studies for the prevention or treatment of dengue.


Assuntos
Vírus da Dengue , Dengue , Hidrocarbonetos Halogenados , Indóis , Camundongos , Humanos , Animais , Sorogrupo , Dengue/tratamento farmacológico
2.
Nat Commun ; 15(1): 42, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168091

RESUMO

To curb viral epidemics and pandemics, antiviral drugs are needed with activity against entire genera or families of viruses. Here, we develop a cell-based multiplex antiviral assay for high-throughput screening against multiple viruses at once, as demonstrated by using three distantly related orthoflaviviruses: dengue, Japanese encephalitis and yellow fever virus. Each virus is tagged with a distinct fluorescent protein, enabling individual monitoring in cell culture through high-content imaging. Specific antisera and small-molecule inhibitors are employed to validate that multiplexing approach yields comparable inhibition profiles to single-virus infection assays. To facilitate downstream analysis, a kernel is developed to deconvolute and reduce the multidimensional quantitative data to three cartesian coordinates. The methodology is applicable to viruses from different families as exemplified by co-infections with chikungunya, parainfluenza and Bunyamwera viruses. The multiplex approach is expected to facilitate the discovery of broader-spectrum antivirals, as shown in a pilot screen of approximately 1200 drug-like small-molecules.


Assuntos
Viroses , Vírus , Humanos , Antivirais/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Técnicas de Cultura de Células , Replicação Viral
3.
Antiviral Res ; 216: 105670, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451630

RESUMO

The hepatitis E virus (HEV) is a major cause of hepatitis, with an estimated 3.3 million symptomatic cases annually. There is no HEV-specific treatment besides the off-label use of ribavirin and a vaccine is only available in China and Pakistan. To aid the development of therapeutic and preventive strategies, there is a need for convenient HEV infection models in small laboratory animals. To this end, we make use of the rat hepatitis E virus. Human infections with this virus have been reported in recent years, making it a relevant pathogen for the establishment of a small animal infection model. We here report that oral gavage of a feces suspension, containing a pre-defined viral RNA load, results in a reproducible synchronized infection in athymic nude rats. This route of administration mimics fecal-oral transmission in a standardized fashion. The suitability of the model to study the effect of antiviral drugs was assessed by using ribavirin, which significantly reduced viral loads in the feces, liver, and other tissues.


Assuntos
Vírus da Hepatite E , Hepatite E , Animais , Ratos , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ribavirina/farmacologia , Ribavirina/uso terapêutico , Hepatite E/tratamento farmacológico , RNA Viral/genética , Fezes
4.
J Med Chem ; 66(13): 8808-8821, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37389813

RESUMO

In the absence of any approved dengue-specific treatment, the discovery and development of a novel small-molecule antiviral for the prevention or treatment of dengue are critical. We previously reported the identification of a novel series of 3-acyl-indole derivatives as potent and pan-serotype dengue virus inhibitors. We herein describe our optimization efforts toward preclinical candidates 24a and 28a with improved pan-serotype coverage (EC50's against the four DENV serotypes ranging from 0.0011 to 0.24 µM for 24a and from 0.00060 to 0.084 µM for 28a), chiral stability, and oral bioavailability in preclinical species, as well as showing a dose-proportional increase in efficacy against DENV-2 infection in vivo in mice.


Assuntos
Vírus da Dengue , Dengue , Camundongos , Animais , Sorogrupo , Antivirais/farmacologia , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Indóis/farmacologia , Indóis/uso terapêutico
6.
Nature ; 615(7953): 678-686, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922586

RESUMO

Dengue is a major health threat and the number of symptomatic infections caused by the four dengue serotypes is estimated to be 96 million1 with annually around 10,000 deaths2. However, no antiviral drugs are available for the treatment or prophylaxis of dengue. We recently described the interaction between non-structural proteins NS3 and NS4B as a promising target for the development of pan-serotype dengue virus (DENV) inhibitors3. Here we present JNJ-1802-a highly potent DENV inhibitor that blocks the NS3-NS4B interaction within the viral replication complex. JNJ-1802 exerts picomolar to low nanomolar in vitro antiviral activity, a high barrier to resistance and potent in vivo efficacy in mice against infection with any of the four DENV serotypes. Finally, we demonstrate that the small-molecule inhibitor JNJ-1802 is highly effective against viral infection with DENV-1 or DENV-2 in non-human primates. JNJ-1802 has successfully completed a phase I first-in-human clinical study in healthy volunteers and was found to be safe and well tolerated4. These findings support the further clinical development of JNJ-1802, a first-in-class antiviral agent against dengue, which is now progressing in clinical studies for the prevention and treatment of dengue.


Assuntos
Antivirais , Vírus da Dengue , Dengue , Primatas , Proteínas não Estruturais Virais , Animais , Humanos , Camundongos , Antivirais/efeitos adversos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ensaios Clínicos Fase I como Assunto , Dengue/tratamento farmacológico , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/efeitos dos fármacos , Relação Dose-Resposta a Droga , Farmacorresistência Viral , Técnicas In Vitro , Terapia de Alvo Molecular , Primatas/virologia , Ligação Proteica/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
7.
Sci Rep ; 13(1): 3131, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823196

RESUMO

Remdesivir (GS-5734; VEKLURY) is a single diastereomer monophosphoramidate prodrug of an adenosine analog (GS-441524). Remdesivir is taken up by target cells and metabolized in multiple steps to form the active nucleoside triphosphate (GS-443902), which acts as a potent inhibitor of viral RNA-dependent RNA polymerases. Remdesivir and GS-441524 have antiviral activity against multiple RNA viruses. Here, we expand the evaluation of remdesivir's antiviral activity to members of the families Flaviviridae, Picornaviridae, Filoviridae, Orthomyxoviridae, and Hepadnaviridae. Using cell-based assays, we show that remdesivir can inhibit infection of flaviviruses (such as dengue 1-4, West Nile, yellow fever, Zika viruses), picornaviruses (such as enterovirus and rhinovirus), and filoviruses (such as various Ebola, Marburg, and Sudan virus isolates, including novel geographic isolates), but is ineffective or is significantly less effective against orthomyxoviruses (influenza A and B viruses), or hepadnaviruses B, D, and E. In addition, remdesivir shows no antagonistic effect when combined with favipiravir, another broadly acting antiviral nucleoside analog, and has minimal interaction with a panel of concomitant medications. Our data further support remdesivir as a broad-spectrum antiviral agent that has the potential to address multiple unmet medical needs, including those related to antiviral pandemic preparedness.


Assuntos
Filoviridae , Doença pelo Vírus Ebola , Infecção por Zika virus , Zika virus , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Monofosfato de Adenosina , Alanina , Doença pelo Vírus Ebola/tratamento farmacológico , Infecção por Zika virus/tratamento farmacológico
8.
J Virol ; 96(16): e0075822, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35924921

RESUMO

Ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lacks the intrinsic ability to bind to the mouse ACE2 receptor, and therefore establishment of SARS-CoV-2 mouse models has been limited to the use of mouse-adapted viruses or genetically modified mice. Interestingly, some of the variants of concern, such as the Beta B.1.351 variant, show an improved binding to the mouse receptor and hence better replication in different wild-type (WT) mouse species. Here, we describe the establishment of a SARS-CoV-2 Beta B.1.351 variant infection model in male SCID mice as a tool to assess the antiviral efficacy of potential SARS-CoV-2 small-molecule inhibitors. Intranasal infection of male SCID mice with 105 50% tissue culture infective doses (TCID50) of the Beta B.1.351 variant resulted in high viral loads in the lungs and moderate signs of lung pathology on day 3 postinfection. Treatment of infected mice with the antiviral drugs molnupiravir (200 mg/kg, twice a day [BID]) or nirmatrelvir (300 mg/kg, BID) for 3 consecutive days significantly reduced the infectious virus titers in the lungs by 2 and 3.9 log10 TCID50/mg of tissue, respectively, and significantly improved lung pathology. Together, these data demonstrate the validity of this SCID mouse Beta B.1.351 variant infection model as a convenient preclinical model for assessment of potential activity of antivirals against SARS-CoV-2. IMPORTANCE Unlike the ancestral SARS-CoV-2 strain, the Beta (B.1.351) variant of concern has been reported to replicate to some extent in WT mice (C57BL/6 and BALB/c). We demonstrate here that infection of SCID mice with the Beta variant resulted in high viral loads in the lungs on day 3 postinfection. Treatment of infected mice with molnupiravir or nirmatrelvir for 3 consecutive days markedly reduced the infectious virus titers in the lungs and improved lung pathology. The SARS-CoV2 SCID mouse infection model, which is ideally suited for antiviral studies, offers an advantage in comparison to other SARS-CoV2 mouse models, in that there is no need for the use of mouse-adapted virus strains or genetically modified mice. Mouse models also have advantages over hamster models because (i) lower amounts of test drugs are needed, (ii) more animals can be housed in a cage, and (iii) reagents to analyze mouse samples are more readily available than those for hamsters.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Cricetinae , Modelos Animais de Doenças , Humanos , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , RNA Viral
9.
Antiviral Res ; 202: 105311, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35390430

RESUMO

Nelfinavir is an HIV protease inhibitor that has been widely prescribed as a component of highly active antiretroviral therapy, and has been reported to exert in vitro antiviral activity against SARS-CoV-2. We here assessed the effect of Nelfinavir in a SARS-CoV-2 infection model in hamsters. Despite the fact that Nelfinavir, [50 mg/kg twice daily (BID) for four consecutive days], did not reduce viral RNA load and infectious virus titres in the lung of infected animals, treatment resulted in a substantial improvement of SARS-CoV-2-induced lung pathology. This was accompanied by a dense infiltration of neutrophils in the lung interstitium which was similarly observed in non-infected hamsters. Nelfinavir resulted also in a marked increase in activated neutrophils in the blood, as observed in non-infected animals. Although Nelfinavir treatment did not alter the expression of chemoattractant receptors or adhesion molecules on human neutrophils, in vitro migration of human neutrophils to the major human neutrophil attractant CXCL8 was augmented by this protease inhibitor. Nelfinavir appears to induce an immunomodulatory effect associated with increasing neutrophil number and functionality, which may be linked to the marked improvement in SARS-CoV-2 lung pathology independent of its lack of antiviral activity. Since Nelfinavir is no longer used for the treatment of HIV, we studied the effect of two other HIV protease inhibitors, namely the combination Lopinavir/Ritonavir (Kaletra™) in this model. This combination resulted in a similar protective effect as Nelfinavir against SARS-CoV2 induced lung pathology in hamsters.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções por HIV , Inibidores da Protease de HIV , Animais , Cricetinae , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , Lopinavir/farmacologia , Lopinavir/uso terapêutico , Pulmão , Mesocricetus , Nelfinavir/farmacologia , Nelfinavir/uso terapêutico , RNA Viral , Ritonavir/uso terapêutico , SARS-CoV-2
10.
J Virol ; 96(6): e0006022, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107376

RESUMO

The impact of the host microbiota on arbovirus infections is currently not well understood. Arboviruses are viruses transmitted through the bites of infected arthropods, predominantly mosquitoes or ticks. The first site of arbovirus inoculation is the biting site in the host skin, which is colonized by a complex microbial community that could possibly influence arbovirus infection. We demonstrated that preincubation of arboviruses with certain components of the bacterial cell wall, including lipopolysaccharides (LPS) of some Gram-negative bacteria and lipoteichoic acids or peptidoglycan of certain Gram-positive bacteria, significantly reduced arbovirus infectivity in vitro. This inhibitory effect was observed for arboviruses of different virus families, including chikungunya virus of the Alphavirus genus and Zika virus of the Flavivirus genus, showing that this is a broad phenomenon. A modest inhibitory effect was observed following incubation with a panel of heat-inactivated bacteria, including bacteria residing on the skin. No viral inhibition was observed after preincubation of cells with LPS. Furthermore, a virucidal effect of LPS on viral particles was noticed by electron microscopy. Therefore, the main inhibitory mechanism seems to be due to a direct effect on the virus particles. Together, these results suggest that bacteria are able to decrease the infectivity of alphaviruses and flaviviruses. IMPORTANCE During the past decades, the world has experienced a vast increase in epidemics of alphavirus and flavivirus infections. These viruses can cause severe diseases, such as hemorrhagic fever, encephalitis, and arthritis. Several alpha- and flaviviruses, such as chikungunya virus, Zika virus, and dengue virus, are significant global health threats because of their high disease burden, their widespread (re-)emergence, and the lack of (good) anti-arboviral strategies. Despite the clear health burden, alphavirus and flavivirus infection and disease are not fully understood. A knowledge gap in the interplay between the host and the arbovirus is the potential interaction with host skin bacteria. Therefore, we studied the effect of (skin) bacteria and bacterial cell wall components on alphavirus and flavivirus infectivity in cell culture. Our results show that certain bacterial cell wall components markedly reduced viral infectivity by interacting directly with the virus particle.


Assuntos
Alphavirus , Arbovírus , Parede Celular , Flavivirus , Alphavirus/patogenicidade , Alphavirus/fisiologia , Animais , Arbovírus/patogenicidade , Arbovírus/fisiologia , Bactérias , Vírus Chikungunya , Flavivirus/patogenicidade , Flavivirus/fisiologia , Lipopolissacarídeos , Microbiota , Zika virus
11.
Cell ; 185(2): 379-396.e38, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35021063

RESUMO

The liver is the largest solid organ in the body, yet it remains incompletely characterized. Here we present a spatial proteogenomic atlas of the healthy and obese human and murine liver combining single-cell CITE-seq, single-nuclei sequencing, spatial transcriptomics, and spatial proteomics. By integrating these multi-omic datasets, we provide validated strategies to reliably discriminate and localize all hepatic cells, including a population of lipid-associated macrophages (LAMs) at the bile ducts. We then align this atlas across seven species, revealing the conserved program of bona fide Kupffer cells and LAMs. We also uncover the respective spatially resolved cellular niches of these macrophages and the microenvironmental circuits driving their unique transcriptomic identities. We demonstrate that LAMs are induced by local lipid exposure, leading to their induction in steatotic regions of the murine and human liver, while Kupffer cell development crucially depends on their cross-talk with hepatic stellate cells via the evolutionarily conserved ALK1-BMP9/10 axis.


Assuntos
Evolução Biológica , Hepatócitos/metabolismo , Macrófagos/metabolismo , Proteogenômica , Animais , Núcleo Celular/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Homeostase , Humanos , Células de Kupffer/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Lipídeos/química , Fígado/metabolismo , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células Mieloides/metabolismo , Obesidade/patologia , Proteoma/metabolismo , Transdução de Sinais , Transcriptoma/genética
12.
Methods Mol Biol ; 2410: 177-192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34914047

RESUMO

The SARS-CoV-2 pandemic has impacted the health of humanity after the outbreak in Hubei, China in late December 2019. Ever since, it has taken unprecedented proportions and rapidity causing over a million fatal cases. Recently, a robust Syrian golden hamster model recapitulating COVID-19 was developed in search for effective therapeutics and vaccine candidates. However, overt clinical disease symptoms were largely absent despite high levels of virus replication and associated pathology in the respiratory tract. Therefore, we used micro-computed tomography (µCT) to longitudinally visualize lung pathology and to preclinically assess candidate vaccines. µCT proved to be crucial to quantify and noninvasively monitor disease progression, to evaluate candidate vaccine efficacy, and to improve screening efforts by allowing longitudinal data without harming live animals. Here, we give a comprehensive guide on how to use low-dose high-resolution µCT to follow-up SARS-CoV-2-induced disease and test the efficacy of COVID-19 vaccine candidates in hamsters. Our approach can likewise be applied for the preclinical assessment of antiviral and anti-inflammatory drug treatments in vivo.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Eficácia de Vacinas , Animais , COVID-19/prevenção & controle , Cricetinae , Microtomografia por Raio-X
13.
Nature ; 598(7881): 504-509, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616043

RESUMO

Dengue virus causes approximately 96 million symptomatic infections annually, manifesting as dengue fever or occasionally as severe dengue1,2. There are no antiviral agents available to prevent or treat dengue. Here, we describe a highly potent dengue virus inhibitor (JNJ-A07) that exerts nanomolar to picomolar activity against a panel of 21 clinical isolates that represent the natural genetic diversity of known genotypes and serotypes. The molecule has a high barrier to resistance and prevents the formation of the viral replication complex by blocking the interaction between two viral proteins (NS3 and NS4B), thus revealing a previously undescribed mechanism of antiviral action. JNJ-A07 has a favourable pharmacokinetic profile that results in outstanding efficacy against dengue virus infection in mouse infection models. Delaying start of treatment until peak viraemia results in a rapid and significant reduction in viral load. An analogue is currently in further development.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/classificação , Vírus da Dengue/efeitos dos fármacos , Dengue/virologia , Proteínas de Membrana/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Antivirais/farmacocinética , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Carga Viral/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Viremia/tratamento farmacológico , Viremia/virologia , Replicação Viral/efeitos dos fármacos
14.
Sci Transl Med ; 13(621): eabi7826, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34609205

RESUMO

Broadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future Sarbecovirus outbreaks. Camelid-derived single domain antibodies (VHHs) exhibit potent antimicrobial activity and are being developed as SARS-CoV-2­neutralizing antibody-like therapeutics. Here, we identified VHHs that neutralize both SARS-CoV-1 and SARS-CoV-2, including now circulating variants. We observed that the VHHs bound to a highly conserved epitope in the receptor binding domain of the viral spike protein that is difficult to access for human antibodies. Structure-guided molecular modeling, combined with rapid yeast-based prototyping, resulted in an affinity enhanced VHH-human immunoglobulin G1 Fc fusion molecule with subnanomolar neutralizing activity. This VHH-Fc fusion protein, produced in and purified from cultured Chinese hamster ovary cells, controlled SARS-CoV-2 replication in prophylactic and therapeutic settings in mice expressing human angiotensin converting enzyme 2 and in hamsters infected with SARS-CoV-2. These data led to affinity-enhanced selection of the VHH, XVR011, a stable anti­COVID-19 biologic that is now being evaluated in the clinic.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Modelos Animais , SARS-CoV-2
16.
EBioMedicine ; 72: 103595, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34571361

RESUMO

BACKGROUND: Favipiravir and Molnupiravir, orally available antivirals, have been reported to exert antiviral activity against SARS-CoV-2. First efficacy data have been recently reported in COVID-19 patients. METHODS: We here report on the combined antiviral effect of both drugs in a SARS-CoV-2 Syrian hamster infection model. The infected hamsters were treated twice daily with the vehicle (the control group) or a suboptimal dose of each compound or a combination of both compounds. FINDINGS: When animals were treated with a combination of suboptimal doses of Molnupiravir and Favipiravir at the time of infection, a marked combined potency at endpoint is observed. Infectious virus titers in the lungs of animals treated with the combination are reduced by ∼5 log10 and infectious virus are no longer detected in the lungs of >60% of treated animals. When start of treatment was delayed with one day a reduction of titers in the lungs of 2.4 log10 was achieved. Moreover, treatment of infected animals nearly completely prevented transmission to co-housed untreated sentinels. Both drugs result in an increased mutation frequency of the remaining viral RNA recovered from the lungs of treated animals. In the combo-treated hamsters, an increased frequency of C-to-T mutations in the viral RNA is observed as compared to the single treatment groups which may explain the pronounced antiviral potency of the combination. INTERPRETATION: Our findings may lay the basis for the design of clinical studies to test the efficacy of the combination of Molnupiravir/Favipiravir in the treatment of COVID-19. FUNDING: stated in the acknowledgment.


Assuntos
Amidas/uso terapêutico , Tratamento Farmacológico da COVID-19 , Citidina/análogos & derivados , Hidroxilaminas/uso terapêutico , Pulmão/virologia , Pirazinas/uso terapêutico , Amidas/farmacologia , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/transmissão , Citidina/farmacologia , Citidina/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Hidroxilaminas/farmacologia , Mesocricetus , Pirazinas/farmacologia , RNA Viral , Resultado do Tratamento , Carga Viral
18.
EBioMedicine ; 68: 103403, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34049240

RESUMO

BACKGROUND: Within one year after its emergence, more than 108 million people acquired SARS-CoV-2 and almost 2·4 million succumbed to COVID-19. New SARS-CoV-2 variants of concern (VoC) are emerging all over the world, with the threat of being more readily transmitted, being more virulent, or escaping naturally acquired and vaccine-induced immunity. At least three major prototypic VoC have been identified, i.e. the United Kingdom, UK (B.1.1.7), South African (B.1.351) and Brazilian (B.1.1.28.1) variants. These are replacing formerly dominant strains and sparking new COVID-19 epidemics. METHODS: We studied the effect of infection with prototypic VoC from both B.1.1.7 and B.1.351 variants in female Syrian golden hamsters to assess their relative infectivity and virulence in direct comparison to two basal SARS-CoV-2 strains isolated in early 2020. FINDINGS: A very efficient infection of the lower respiratory tract of hamsters by these VoC is observed. In line with clinical evidence from patients infected with these VoC, no major differences in disease outcome were observed as compared to the original strains as was quantified by (i) histological scoring, (ii) micro-computed tomography, and (iii) analysis of the expression profiles of selected antiviral and pro-inflammatory cytokine genes. Noteworthy however, in hamsters infected with VoC B.1.1.7, a particularly strong elevation of proinflammatory cytokines was detected. INTERPRETATION: We established relevant preclinical infection models that will be pivotal to assess the efficacy of current and future vaccine(s) (candidates) as well as therapeutics (small molecules and antibodies) against two important SARS-CoV-2 VoC. FUNDING: Stated in the acknowledgment.


Assuntos
COVID-19/patologia , Citocinas/genética , Sistema Respiratório/virologia , SARS-CoV-2/patogenicidade , Animais , COVID-19/diagnóstico por imagem , COVID-19/genética , Modelos Animais de Doenças , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Mesocricetus , Sistema Respiratório/diagnóstico por imagem , Sistema Respiratório/patologia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Virulência , Microtomografia por Raio-X
19.
EBioMedicine ; 66: 103288, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33752127

RESUMO

BACKGROUND: The antifungal drug itraconazole exerts in vitro activity against SARS-CoV-2 in Vero and human Caco-2 cells. Preclinical and clinical studies are required to investigate if itraconazole is effective for the treatment and/or prevention of COVID-19. METHODS: Due to the initial absence of preclinical models, the effect of itraconazole was explored in a clinical, proof-of-concept, open-label, single-center study, in which hospitalized COVID-19 patients were randomly assigned to standard of care with or without itraconazole. Primary outcome was the cumulative score of the clinical status until day 15 based on the 7-point ordinal scale of the World Health Organization. In parallel, itraconazole was evaluated in a newly established hamster model of acute SARS-CoV-2 infection and transmission, as soon as the model was validated. FINDINGS: In the hamster acute infection model, itraconazole did not reduce viral load in lungs, stools or ileum, despite adequate plasma and lung drug concentrations. In the transmission model, itraconazole failed to prevent viral transmission. The clinical trial was prematurely discontinued after evaluation of the preclinical studies and because an interim analysis showed no signal for a more favorable outcome with itraconazole: mean cumulative score of the clinical status 49 vs 47, ratio of geometric means 1.01 (95% CI 0.85 to 1.19) for itraconazole vs standard of care. INTERPRETATION: Despite in vitro activity, itraconazole was not effective in a preclinical COVID-19 hamster model. This prompted the premature termination of the proof-of-concept clinical study. FUNDING: KU Leuven, Research Foundation - Flanders (FWO), Horizon 2020, Bill and Melinda Gates Foundation.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Itraconazol/farmacologia , Animais , Antivirais/administração & dosagem , Antivirais/farmacocinética , Antivirais/uso terapêutico , COVID-19/etiologia , COVID-19/transmissão , Chlorocebus aethiops , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Itraconazol/administração & dosagem , Itraconazol/farmacocinética , Itraconazol/uso terapêutico , Masculino , Mesocricetus , Pessoa de Meia-Idade , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Estudo de Prova de Conceito , SARS-CoV-2/efeitos dos fármacos , Resultado do Tratamento , Células Vero
20.
Nat Commun ; 12(1): 916, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568638

RESUMO

The global emergence of Zika virus (ZIKV) revealed the unprecedented ability for a mosquito-borne virus to cause congenital birth defects. A puzzling aspect of ZIKV emergence is that all human outbreaks and birth defects to date have been exclusively associated with the Asian ZIKV lineage, despite a growing body of laboratory evidence pointing towards higher transmissibility and pathogenicity of the African ZIKV lineage. Whether this apparent paradox reflects the use of relatively old African ZIKV strains in most laboratory studies is unclear. Here, we experimentally compare seven low-passage ZIKV strains representing the recently circulating viral genetic diversity. We find that recent African ZIKV strains display higher transmissibility in mosquitoes and higher lethality in both adult and fetal mice than their Asian counterparts. We emphasize the high epidemic potential of African ZIKV strains and suggest that they could more easily go unnoticed by public health surveillance systems than Asian strains due to their propensity to cause fetal loss rather than birth defects.


Assuntos
Infecção por Zika virus/mortalidade , Infecção por Zika virus/virologia , Zika virus/fisiologia , Zika virus/patogenicidade , Aedes/fisiologia , Aedes/virologia , África , Animais , Ásia , Feminino , Humanos , Masculino , Camundongos , Filogenia , Virulência , Zika virus/classificação , Zika virus/genética , Infecção por Zika virus/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...